

General Certificate of Education June 2010

Mathematics
MM1B

Mechanics 1B

Mark Scheme

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2010 AQA and its licensors. All rights reserved.

COPYRIGHT
AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

M	mark is for method		
m or dM	mark is dependent on one or more M marks and is for method		
A	mark is dependent on M or m marks and is for accuracy		
B	mark is independent of M or m marks and is for method and accuracy		
E	mark is for explanation		
Vor ft or F	follow through from previous		
	incorrect result		
CAO	correct answer only	MC	mis-copy
CSO	correct solution only	MR	mis-read
AWFW	anything which falls within	RA	required accuracy
AWRT	anything which rounds to	FW	further work
ACF	any correct form	ISW	ignore subsequent work
AG	answer given	FIW	from incorrect work
SC	special case	BOD	given benefit of doubt
OE	or equivalent	WR	work replaced by candidate
A2,1	2 or 1 (or 0) accuracy marks	FB	formulae book
$-x$ EE	deduct x marks for each error	G	not on scheme
NMS	no method shown	c	graph
PI	possibly implied	sf	candidate
SCA	substantially correct approach	dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MM1B

MM1B (cont)

Q	Solution	Marks	Total	Comments
2(a)		B1	1	B1: Correct force diagram with arrows and labels. Note: Award mark if forces drawn on the diagram in the question. Note: Do not accept 10 kg for the weight. Note: Do not accept μR or $0.5 R$ for F.
(b)(i)	$(R=10 \times 9.8=) 98 \mathrm{~N}$	B1	1	B1: Correct normal reaction. Accept $10 g$. No need to see the letter R or working.
(ii)	$\begin{aligned} & (F \leq) 0.5 \times 98 \\ & (F \leq) 49 \end{aligned}$	B1F	1	B1: Correct maximum value for friction. Accept 5g. No need to see the letter F or any working. Ignore any inequalities. For FT, must be 0.5 of candidate's answer to (b)(i).
(iii)	$(F=) 30 \mathrm{~N}$	B1	1	B1: Correct friction. Allow - 30.
(c)	$80-49=10 a$ $a=3.1 \mathrm{~ms}^{-2}$	M1A1F A1F	3	M1: Three term equation motion, containing 80 , candidate's 49 and $10 a$ (not 10 ga) in any combination. A1F: Correct equation including signs. A1F: Correct acceleration. FT candidate's answer to (b)(ii).
	Total		7	
				Allow use of $g=9.81$

MM1B (cont)

Q	Solution	Marks	Total	Comments
3(a)	$6\left[\begin{array}{l} 2 \\ 4 \end{array}\right]+m\left[\begin{array}{c} 3 \\ -2 \end{array}\right]=6\left[\begin{array}{l} 1 \\ 3 \end{array}\right]+m\left[\begin{array}{l} 7 \\ b \end{array}\right]$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$		M1: Four term conservation of momentum equation. Allow sign errors. A1: Correct equation with correct signs. Vector equation may be implied by later correct working in this part of the question.
	$6 \times 2+3 \mathrm{~m}=6 \times 1+7 \mathrm{~m}$	A1		A1: Correct equation for correct component.
	$\begin{aligned} & 12+3 m=6+7 m \\ & 6=4 m \\ & m=1.5 \end{aligned}$	A1	4	A1: Correct m.
				Example if only $12+3 m=6-7 m$ without a vector equation award M1A0A0A0.
(b)	$6 \times 4+1.5 \times(-2)=6 \times 3+1.5 b$	B1F		B1F: Correct equation using m or candidates m from (a).
	$\begin{aligned} & 24-3=18+1.5 b \\ & 3=1.5 b \end{aligned}$			B1F: Correct b from candidate's m from (a).
	$b=2$	B1F	2	Note: $b=\frac{6}{m}-2$
	Total		6	
				Consistent use of $m g$ instead of m throughout penalise 1 mark.

MM1B (cont)

MM1B (cont)

Q	Solution	Marks	Total	Comments
5(a)	$\begin{aligned} & (v=) \sqrt{30^{2}+100^{2}} \\ & =104.4 \\ & =104 \mathrm{~ms}^{-1} \quad(\text { to } 3 \mathrm{SF}) \end{aligned}$	M1A1 A1	3	M1: Equation or expression to find v based on Pythagoras. Must be + . For example: 10900 oe scores M1. A1: Correct equation or expression, with square root. A1: Correct v. Accept 104.4.
(b)	$\theta=\tan ^{-1}\left(\frac{30}{100}\right) \text { or } \tan ^{-1}\left(\frac{100}{30}\right)$	M1		M1: Trigonometric equation to find α.
	$=017^{\circ}$	A1F	2	A1F: Correct α. Follow through incorrect answer from (b).
	OR $\theta=\sin ^{-1}\left(\frac{30}{104.4}\right) \text { or } \sin ^{-1}\left(\frac{100}{104.4}\right)$	(M1)		Note: Subtracting 17 etc from other values such as 360 or 90 can not be ignored and will score M1.
	$=017^{\circ}$ OR	(A1F)		Accept 16 or 17 or 16.6 or 16.7 or 16.8 . Also accept all of these with a zero in front, eg 016.
	$\begin{aligned} & \theta=\cos ^{-1}\left(\frac{100}{104.4}\right) \text { or } \cos ^{-1}\left(\frac{30}{104.4}\right) \\ & =017^{\circ} \end{aligned}$	$\begin{array}{r} \text { (M1) } \\ (\mathrm{A} 1 \mathrm{~F}) \\ \hline \end{array}$		
	Total		5	

MM1B (cont)

Q	Solution	Marks	Total	Comments
6(a)	$12 g-T=12 a$ $T-8 g=8 a$	M1A1 M1A1		M1: Three term equation of motion, with $12 g$ (or 117.6), $12 a$ (not $12 g a$) and T. A1: Correct equation M1: Three term equation of motion, with $8 g$ (or 78.4), $8 a($ not $8 g a)$ and T. A1: Correct equation
	$a\left(=\frac{4 g}{20}\right)=1.96 \mathrm{~ms}^{-2} \quad \mathrm{AG}$	A1	5	A1: Correct acceleration from correct working. Note: Do not penalise candidates who consistently use signs in the opposite direction throughout, provided they give their final answer as 1.96. If final answer is -1.96 don't award final A1 mark. Special Case: Whole String Method $4 g=20 a$ and $a=\frac{4 g}{20}=1.96 \mathrm{OE} \mathrm{M} 1 \mathrm{~A} 1 \mathrm{~A} 1$
(b)	$T=8 \mathrm{~g}+8 \times 1.96=94.1 \mathrm{~N}$	M1A1	2	M1: Use of three term equation of motion to find T, with $a=1.96$. A1: Correct tension. Accept 94.08.
(c)(i)	$v=0+1.96 \times 2=3.92 \mathrm{~ms}^{-1}$	M1A1	2	M1: Use of constant acceleration equation to find v, with $a=1.96$ and $u=0$. A1: Correct v. Using $s=4$ scores M0.
(ii)	$v^{2}=3.92^{2}+2 \times 9.8 \times 4$	$\begin{aligned} & \text { M1 } \\ & \text { A1F } \end{aligned}$		M1: Use of constant acceleration equation to find v, with $a= \pm 9.8$ and $u \neq 0$. A1F: Correct equation. FT initial velocity from (c)(i).
	$v=9.68 \mathrm{~ms}^{-1}$	A1F	3	A1F: Correct v. FT initial velocity from (c)(i). For example 11.8 from 7.84.

MM1B (cont)

MM1B(cont)

Q	Solution	Marks	Total	Comments
7(a)	$\begin{aligned} & 10 \mathbf{a}=9 \mathbf{i}+12 \mathbf{j} \\ & \mathbf{a}=(0.9 \mathbf{i}+1.2 \mathbf{j}) \mathrm{ms}^{-2} \end{aligned}$	M1 A1	2	M1: Application of Newton's second Law with $m=10$ in vector form. A1: Correct acceleration. If acceleration incorrect follow their value through for the rest of this question.
(b)(i)	$\begin{aligned} & \mathbf{r}(5)= \\ & (2.2 \mathbf{i}+1 \mathbf{j}) \times 5+\frac{1}{2}(0.9 \mathbf{i}+1.2 \mathbf{j}) \times 5^{2} \\ & =22.25 \mathbf{i}+20 \mathbf{j} \end{aligned}$ $d=\sqrt{22.25^{2}+20^{2}}=29.9 \text { metres }$	M1 A1F dM1 A1F	4	M1: Use of constant acceleration to find position vector at $t=5$, with $\mathbf{u} \neq 0 \mathbf{i}+0 \mathbf{j}$. A1F: Correct position vector, for candidate's acceleration which must be a vector. Allow $22.3 \mathbf{i}+20 \mathbf{j}$. dM1: Calculation of distance from position vector. Must see + sign. A1F: Correct distance, for their acceleration. Accept 30 from $22.3 \mathbf{i}+20 \mathbf{j}$.
(ii)	$\mathbf{v}=(2.2 \mathbf{i}+1 \mathbf{j})+(0.9 \mathbf{i}+1.2 \mathbf{j}) t$	$\begin{gathered} \text { M1 } \\ \text { A1F } \end{gathered}$	2	M1: Use of constant acceleration equation to find an expression for \mathbf{v}, with $\mathbf{u} \neq 0 \mathbf{i}+0 \mathbf{j}$. A1F: Correct \mathbf{v} for their acceleration.
(iii)	$\begin{aligned} & \mathbf{v}=(2.2+0.9 t) \mathbf{i}+(1+1.2 t) \mathbf{j} \\ & 2.2+0.9 t=1+1.2 t \\ & 1.2=0.3 t \\ & t=4 \end{aligned}$	M1 A1F A1F	3	M1: Equation involving both \mathbf{i} and \mathbf{j} components of their velocity. Could have incorrect signs, for example $2.2+0.9 t=-(1+1.2 t) .$ A1F: Correct equation. A1F: Correct time, for their acceleration.
	Total		11	

MM1B (cont)

